Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 472
1.
Molecules ; 29(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38731557

The supramolecular solvent (SUPRAS) has garnered significant attention as an innovative, efficient, and environmentally friendly solvent for the effective extraction and separation of bioactive compounds from natural resources. However, research on the use of a SUPRAS for the extraction of phenolic compounds from plants, which are highly valued in food products due to their exceptional antioxidant properties, remains scarce. The present study developed a green, ultra-sound-assisted SUPRAS method for the simultaneous determination of three phenolic acids in Prunella vulgaris using high-performance liquid chromatography (HPLC). The experimental parameters were meticulously optimized. The efficiency and antioxidant properties of the phenolic compounds obtained using different extraction methods were also compared. Under optimal conditions, the extraction efficiency of the SUPRAS, prepared with octanoic acid reverse micelles dispersed in ethanol-water, significantly exceeded that of conventional organic solvents. Moreover, the SUPRAS method demonstrated greater antioxidant capacity. Confocal laser scanning microscopy (CLSM) images revealed the spherical droplet structure of the SUPRAS, characterized by a well-defined circular fluorescence position, which coincided with the position of the phenolic acids. The phenolic acids were encapsulated within the SUPRAS droplets, indicating their efficient extraction capacity. Furthermore, molecular dynamics simulations combined with CLSM supported the proposed method's mechanism and theoretically demonstrated the superior extraction performance of the SUPRAS. In contrast to conventional methods, the higher extraction efficiency of the SUPRAS can be attributed to the larger solvent contact surface area, the formation of more types of hydrogen bonds between the extractants and the supramolecular solvents, and stronger, more stable interaction forces. The results of the theoretical studies corroborate the experimental outcomes.


Antioxidants , Phenols , Plant Extracts , Solvents , Solvents/chemistry , Phenols/chemistry , Phenols/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , Green Chemistry Technology , Molecular Dynamics Simulation , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification
2.
Chem Biodivers ; 21(4): e202301962, 2024 Apr.
Article En | MEDLINE | ID: mdl-38415915

Stingless bees belong to the Meliponini tribe and are widely distributed in the tropics and subtropics, where they perform important ecological services. Among the best distributed groups of stingless bees is the genus Scaptotrigona, which includes 22 species distributed throughout the neotropical region, including the area from Mexico to Argentina. Bees of this genus are responsible for the production of products such as honey, propolis, geopropolis and fermented pollen ("saburá"). This review aimed to provide an overview of the chemical composition and biological activities associated with derived products from stingless bees of the genus Scaptotrigona. The bibliographic review was carried out through searches in the Scopus, Web of Science, ScienceDirect and PubMed databases, including publications from 2003 to January 2023. The study of the chemodiversity of products derived from Scaptotrigona demonstrated the mainly presence of flavonoids, phenolic acids, terpenoids and alkaloids. It was also demonstrated that products derived from bees of the genus Scaptotrigona exhibit a wide range of biological effects, such as antibacterial, antioxidant, anti-inflammatory and antifungal activities, among other bioactivities. This review provides an overview of phytochemical and pharmacological investigations of the genus Scaptotrigona. However, it is essential to clarify the toxicity and food safety of these products.


Honey , Hymenoptera , Propolis , Animals , Anti-Bacterial Agents/pharmacology , Bees , Mexico , Propolis/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/pharmacology , Terpenes/chemistry , Terpenes/isolation & purification , Terpenes/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology
3.
Mar Drugs ; 20(3)2022 Mar 07.
Article En | MEDLINE | ID: mdl-35323494

Six new ß-resorcylic acid derivatives (1-5 and 7) were isolated from a halophyte-associated fungus, Colletotrichum gloeosporioides JS0419, together with four previously reported ß-resorcylic acid lactones (RALs). The relative and absolute stereochemistry of 1 was completely established by a combination of spectroscopic data and chemical reactions. The structures of the isolated compounds were elucidated by analysis of HRMS and NMR data. Notably, compounds 1-3 had a ß-resorcylic acid harboring a long unesterified aliphatic side chain, whereas the long aliphatic chains were esterified to form macrolactones in 4-9. Among the isolated compounds, monocillin I and radicicol showed potent antifungal activities against Cryptococcus neoformans, comparable to clinically available antifungal agents and radicicol showed weak antifungal activity against Candida albicans. These findings provide insight into the chemical diversity of fungal RAL-type compounds and their pharmacological potential.


Antifungal Agents/pharmacology , Candida albicans/drug effects , Chenopodiaceae/microbiology , Colletotrichum/chemistry , Cryptococcus neoformans/drug effects , Hydroxybenzoates/pharmacology , Salt-Tolerant Plants/microbiology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Candida albicans/growth & development , Cryptococcus neoformans/growth & development , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Molecular Structure , Stereoisomerism
4.
Molecules ; 26(21)2021 Oct 23.
Article En | MEDLINE | ID: mdl-34770820

The chemical composition of extractives in the sapwood (SW), heartwood (HW), knotwood (KW), and branchwood (BW of silver fir (Abies alba Mill.) was analyzed, and their antifungal and antioxidant properties were studied. In addition, the variability of extractives content in a centripetal direction, i.e., from the periphery of the stem towards the pith, was investigated. The extracts were analyzed chemically with gravimetry, spectrophotometry, and chromatography. The antifungal and antioxidative properties of the extracts were evaluated by the agar well diffusion method and the diphenyl picrylhydrazyl radical scavenging method. Average amounts of hydrophilic extractives were higher in KW (up to 210.4 mg/g) and BW (148.6 mg/g) than in HW (34.1 mg/g) and SW (14.8 mg/g). Extractives identified included lignans (isolariciresinol, lariciresinol, secoisolariciresinol, pinoresinol, matairesinol) phenolic acids (homovanillic acid, coumaric acid, ferulic acid), and flavonoids epicatechin, taxifolin, quercetin). Secoisolariciresinol was confirmed to be the predominant compound in the KW (29.8 mg/g) and BW (37.6 mg/g) extracts. The largest amount of phenolic compounds was extracted from parts of knots (281.7 mg/g) embedded in the sapwood and from parts of branches (258.9 mg/g) adjacent to the stem. HW contained more lignans in its older sections. Hydrophilic extracts from knots and branches inhibited the growth of wood-decaying fungi and molds. KW and BW extracts were better free radical scavengers than HW extracts. The results of the biological activity tests suggest that the protective function of phenolic extracts in silver fir wood can also be explained by their antioxidative properties. The results of this study describe BW as a potential source of phenolic extractives in silver fir.


Antifungal Agents/pharmacology , Antioxidants/pharmacology , Hydroxybenzoates/pharmacology , Lignans/pharmacology , Plant Extracts/pharmacology , Wood/chemistry , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Basidiomycota/drug effects , Biphenyl Compounds/antagonists & inhibitors , Dose-Response Relationship, Drug , Fusarium/drug effects , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Lignans/chemistry , Lignans/isolation & purification , Microbial Sensitivity Tests , Penicillium/drug effects , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Polyporaceae/drug effects , Schizophyllum/drug effects
5.
Biomed Pharmacother ; 144: 112322, 2021 Dec.
Article En | MEDLINE | ID: mdl-34656059

Alpinia officinarum (AO) has been traditionally used in Asia as an herbal medicine to treat inflammatory and internal diseases. However, the therapeutic effect of AO on atopic dermatitis (AD) is unclear. Therefore, we examined whether Alpinia officinarum water extract (AOWex) affects AD in vivo and in vitro. Oral administration of AOWex to NC/Nga mice with Dermatophagoies farina extract (DfE)-induced AD-like symptoms significantly reduced the severity of clinical dermatitis, epidermal thickness, and mast cell infiltration into the skin and ear tissue. Decreased total serum IgE, macrophage-derived chemokine (MDC), and regulated on activation, normal T-cell expressed and secreted (RANTES) levels were observed in DfE-induced NC/Nga mice in the AOWex-treated group. These effects were confirmed in vitro using HaCaT cells. Treatment with AOWex inhibited the expression of proinflammatory chemokines such as MDC, RANTES, IP-10 and I-TAC in interferon-γ and tumor necrosis factor-α-stimulated HaCaT cells. The anti-inflammatory effects of AOWex were due to its inhibitory action on MAPK phosphorylation (ERK and JNK), NF-κB, and STAT1. Furthermore, galangin, protocatechuic acid, and epicatechin from AOWex were identified as candidate anti-AD compounds. These results suggest that AOWex exerts therapeutic effects against AD by alleviating AD-like skin lesions, suppressing inflammatory mediators, and inhibiting major signaling molecules.


Alpinia , Anti-Inflammatory Agents/pharmacology , Chemokines/metabolism , Dermatitis, Atopic/prevention & control , Keratinocytes/drug effects , Plant Extracts/pharmacology , Skin/drug effects , Alpinia/chemistry , Animals , Anti-Inflammatory Agents/isolation & purification , Antigens, Dermatophagoides/immunology , Arthropod Proteins/immunology , Catechin/isolation & purification , Catechin/pharmacology , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Dermatophagoides farinae/immunology , Disease Models, Animal , Flavonoids/isolation & purification , Flavonoids/pharmacology , HaCaT Cells , Humans , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/pharmacology , Keratinocytes/immunology , Keratinocytes/metabolism , Keratinocytes/pathology , Male , Mice , Plant Extracts/isolation & purification , Signal Transduction , Skin/immunology , Skin/metabolism , Skin/pathology , Solvents/chemistry , Water/chemistry
6.
PLoS One ; 16(10): e0258607, 2021.
Article En | MEDLINE | ID: mdl-34648570

Staphylococcus aureus and Methicillin-resistant S. aureus (MRSA) remains one of the major concerns of healthcare associated and community-onset infections worldwide. The number of cases of treatment failure for infections associated with resistant bacteria is on the rise, due to the decreasing efficacy of current antibiotics. Notably, Acrophialophora levis, a thermophilous fungus species, showed antibacterial activity, namely against S. aureus and clinical MRSA strains. The ethyl acetate extract of culture filtrate was found to display significant activity against S. aureus and MRSA with a minimum inhibitory concentration (MIC) of 1 µg/mL and 4 µg/mL, respectively. Scanning electron micrographs demonstrated drastic changes in the cellular architecture of metabolite treated cells of S. aureus and an MRSA clinical isolate. Cell wall disruption, membrane lysis and probable leakage of cytoplasmic are hallmarks of the antibacterial effect of fungal metabolites against MRSA. The ethyl acetate extract also showed strong antioxidant activity using two different complementary free radicals scavenging methods, DPPH and ABTS with efficiency of 55% and 47% at 1 mg/mL, respectively. The total phenolic and flavonoid content was found to be 50 mg/GAE and 20 mg/CAE, respectively. More than ten metabolites from different classes were identified: phenolic acids, phenylpropanoids, sesquiterpenes, tannins, lignans and flavonoids. In conclusion, the significant antibacterial activity renders this fungal strain as a bioresource for natural compounds an interesting alternative against resistant bacteria.


Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Biological Factors/pharmacology , Methicillin-Resistant Staphylococcus aureus/ultrastructure , Sordariales/chemistry , Acetates/chemistry , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Biological Factors/chemistry , Flavonoids/isolation & purification , Hydroxybenzoates/isolation & purification , India , Lignans/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Sesquiterpenes/isolation & purification , Tannins/isolation & purification
7.
Molecules ; 26(15)2021 Jul 30.
Article En | MEDLINE | ID: mdl-34361795

Although Australia is the largest exporter of faba bean globally, there is limited information available on the levels of bioactive compounds found in current commercial faba bean varieties grown in this country. This study profiled the phenolic acid and flavonoid composition of 10 Australian faba bean varieties, grown at two different locations. Phenolic profiling by HPLC-DAD revealed the most abundant flavonoid to be catechin, followed by rutin. For the phenolic acids, syringic acid was found in high concentrations (72.4-122.5 mg/kg), while protocatechuic, vanillic, p-hydroxybenzoic, chlorogenic, p-coumaric, and trans-ferulic acid were all found in low concentrations. The content of most individual phenolics varied significantly with the variety, while some effect of the growing location was also observed. This information could be used by food processors and plant breeders to maximise the potential health benefits of Australian-grown faba bean.


Antioxidants/chemistry , Crops, Agricultural/chemistry , Flavonoids/chemistry , Vicia faba/chemistry , Antioxidants/classification , Antioxidants/isolation & purification , Australia , Catechin/chemistry , Catechin/isolation & purification , Chlorogenic Acid/chemistry , Chlorogenic Acid/isolation & purification , Chromatography, High Pressure Liquid/methods , Coumaric Acids/chemistry , Coumaric Acids/isolation & purification , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Flavonoids/classification , Flavonoids/isolation & purification , Gallic Acid/analogs & derivatives , Gallic Acid/chemistry , Gallic Acid/isolation & purification , Humans , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Parabens/chemistry , Parabens/isolation & purification , Rutin/chemistry , Rutin/isolation & purification , Vanillic Acid/chemistry , Vanillic Acid/isolation & purification , Vicia faba/growth & development , Vicia faba/metabolism
8.
J Sep Sci ; 44(18): 3418-3428, 2021 Sep.
Article En | MEDLINE | ID: mdl-34288429

Magnetism-assisted in-tube solid phase microextraction based on porous monolith mingled with Fe3 O4 nanoparticles was developed for capture of phenolic acids in fruit juices. First, poly (1-allyl-3-methylimidazolium bis [(trifluoro methyl) sulfonyl] imide-co-ethylene dimethacrylate) monolith embedded with Fe3 O4 nanoparticles was facile fabrication in a capillary and employed as microextraction column. Subsequently, a magnetic coil adopted to produce variable magnetic fields during extraction stage was twined on the microextraction column. The analytes contents in eluant were quantified by high performance liquid chromatogram with diode array detector. Various parameters affecting the extraction performance were inspected and optimized in detail. Results revealed that the exertion of magnetic fields in adsorption and desorption steps enhanced the extraction efficiencies of analytes from 44.9-64.0% to 78.6-87.1%. Under the optimal extraction factors, the limits of detection were between 0.012 and 0.061 µg/L, relative standard deviations for precision in terms of intra- and inter-day assay variability ranged from 1.9 to 9.8%. The introduced approach was successfully applied to simultaneously quantify the contents of five analytes in real fruit juices with satisfying fortified recoveries (80.1-116%). The obtained results well demonstrate the promising potential of the developed method in the highly sensitive quantification of trace phenolic acids in complex samples.


Chromatography, High Pressure Liquid/methods , Fruit and Vegetable Juices/analysis , Hydroxybenzoates , Solid Phase Microextraction/methods , Adsorption , Hydroxybenzoates/analysis , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Limit of Detection , Linear Models , Magnetite Nanoparticles/chemistry , Reproducibility of Results
9.
Molecules ; 26(9)2021 May 08.
Article En | MEDLINE | ID: mdl-34066694

Honey consumption is attributed to potentially advantageous effects on human health due to its antioxidant capacity as well as anti-inflammatory and antimicrobial activity, which are mainly related to phenolic compound content. Phenolic compounds are secondary metabolites of plants, and their content in honey is primarily affected by the botanical and geographical origin. In this study, a high-resolution mass spectrometry (HRMS) method was applied to determine the phenolic profile of various honey matrices and investigate authenticity markers. A fruitful sample set was collected, including honey from 10 different botanical sources (n = 51) originating from Greece and Poland. Generic liquid-liquid extraction using ethyl acetate as the extractant was used to apply targeted and non-targeted workflows simultaneously. The method was fully validated according to the Eurachem guidelines, and it demonstrated high accuracy, precision, and sensitivity resulting in the detection of 11 target analytes in the samples. Suspect screening identified 16 bioactive compounds in at least one sample, with abscisic acid isomers being the most abundant in arbutus honey. Importantly, 10 markers related to honey geographical origin were revealed through non-targeted screening and the application of advanced chemometric tools. In conclusion, authenticity markers and discrimination patterns were emerged using targeted and non-targeted workflows, indicating the impact of this study on food authenticity and metabolomic fields.


Antioxidants/analysis , Benzaldehydes/analysis , Cinnamates/analysis , Flavonoids/analysis , Honey/analysis , Hydroxybenzoates/analysis , Mass Spectrometry/methods , Metabolome , Metabolomics/methods , Antioxidants/isolation & purification , Benzaldehydes/isolation & purification , Cinnamates/isolation & purification , Data Accuracy , Flavonoids/isolation & purification , Greece , Humans , Hydroxybenzoates/isolation & purification , Poland , Sensitivity and Specificity
10.
J Oleo Sci ; 70(5): 607-613, 2021 May 01.
Article En | MEDLINE | ID: mdl-33840664

The oil recovery from Alyanak apricot kernel was 36.65% in control (unroasted) and increased to 43.77% in microwave-roasted kernels. The total phenolic contents in extracts from apricot kernel were between 0.06 (oven-roasted) and 0.20 mg GAE/100 g (microwave-roasted) while the antioxidant activity varied between 2.55 (oven-roasted) and 19.34% (microwave-roasted). Gallic acid, 3,4-dihydroxybenzoic acid, (+)-catechin and 1,2-dihydroxybenzene were detected as the key phenolic constituents in apricot kernels. Gallic acid contents varied between 0.53 (control) and 1.10 mg/100 g (microwave-roasted) and 3,4-dihydroxybenzoic acid contents were between 0.10 (control) and 0.35 mg/100 g (microwave-roasted). Among apricot oil fatty acids, palmitic acid contents ranged from 4.38 (oven-roasted) to 4.76% (microwave-roasted); oleic acid contents were between 65.73% (oven-roasted) and 66.15% (control) and linoleic acid contents varied between 26.55 (control) and 27.12% (oven-roasted).


Antioxidants/analysis , Catechin/isolation & purification , Catechols/isolation & purification , Gallic Acid/isolation & purification , Hydroxybenzoates/isolation & purification , Linoleic Acids/isolation & purification , Microwaves , Oleic Acid/isolation & purification , Plant Oils/analysis , Plant Oils/isolation & purification , Prunus armeniaca/chemistry , Seeds/chemistry
11.
Arch Pharm Res ; 44(4): 427-438, 2021 Apr.
Article En | MEDLINE | ID: mdl-33847919

Over the past 100 years, Salvia miltiorrhiza f. alba (Lamiaceae) (RSMA) roots have been used to cure thromboangiitis obliterans (TAO) in local clinics. This study aimed to confirm the anti-thrombotic efficacy of 12 phenolic acids obtained from RSMA and to clarify the possible underlying mechanisms. The results of quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) experiments demonstrated that most of the phenolic acids markedly inhibited PAI-1 protein and mRNA levels but increased t-PA protein and mRNA levels in TNF-α-induced EA.hy926 cells (P < 0.05 or 0.001), with lithospermic acid displaying the strongest effect. In vitro anticoagulation and antiplatelet aggregation assays showed that lithospermic acid and salvianolic acid B significantly prolonged prothrombin time (PT), activated partial thromboplastin time (APTT), decreased fibrinogen concentration (FIB), and inhibited platelet aggregation induced by adenosine diphosphate (ADP) in rat blood. Both lithospermic acid and salvianolic acid B markedly down-regulated the expression of factor Xa and factor IIa on the external surface of EA.hy926 cells and demonstrated significant anti-factor IIa and anti-factor Xa activity using chromogenic substrates in vitro. Western blot results revealed that both lithospermic acid and salvianolic acid B also significantly inhibited the expression of TF, p-p65, p-p38, and pJNK proteins induced by TNF-α. These results indicated that all of the phenolic acids appeared to have some anti-thrombotic activity, with salvianolic acid B and lithospermic acid markedly decreasing the chance of thrombosis by regulating the NF-κB/JNK/p38 MAPK signaling pathway in response to TNF-α.


Anticoagulants/pharmacology , Hydroxybenzoates/pharmacology , Salvia miltiorrhiza/chemistry , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Anticoagulants/chemistry , Anticoagulants/isolation & purification , Cell Survival/drug effects , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , NF-kappa B/metabolism , Prothrombin Time , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Molecules ; 26(6)2021 Mar 13.
Article En | MEDLINE | ID: mdl-33805815

The phenolic composition, as well as the antioxidant and antimicrobial activities of two poorly investigated Achillea species, Achillea lingulata Waldst. and the endemic Achillea abrotanoides Vis., were studied. To obtain a more detailed phytochemical profile, four solvents with different polarities were used for the preparation of the plant extracts whose phenolic composition was analyzed using UHPLC-MS/MS (ultra-high performance liquid chromatography-tandem mass spectrometry). The results indicate that both of the investigated Achillea species are very rich in both phenolic acids and flavonoids, but that their profiles differ significantly. Chloroform extracts from both species had the highest yields and were the most chemically versatile. The majority of the examined extracts showed antimicrobial activity, while ethanolic extracts from both species were potent against all tested microorganisms. Furthermore, the antioxidant activity of the extracts was evaluated. It was found that the ethanolic extracts possessed the strongest antioxidant activities, although these extracts did not contain the highest amounts of detected phenolic compounds. In addition, several representatives of phenolic compounds were also assayed for these biological activities. Results suggest that ethanol is a sufficient solvent for the isolation of biologically active compounds from both Achillea species. Moreover, it was shown that the flavonoids naringenin and morin are mainly responsible for these antimicrobial activities, while caffeic, salicylic, chlorogenic, p-coumaric, p-hydroxybenzoic, and rosmarinic acid are responsible for the antioxidant activities of the Achillea extracts.


Achillea/chemistry , Anti-Infective Agents/isolation & purification , Antioxidants/isolation & purification , Hydroxybenzoates/isolation & purification , Phytochemicals/isolation & purification , Achillea/classification , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Chromatography, High Pressure Liquid , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Microbial Sensitivity Tests , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Solvents , Species Specificity , Tandem Mass Spectrometry
13.
Chem Biodivers ; 18(5): e2100080, 2021 May.
Article En | MEDLINE | ID: mdl-33773025

This study reports the in vitro anticoagulation activity of acetonic extract (AE) of 42 lichen species and the identification of potential bioavailable anticoagulant compounds from Umbilicaria decussata as a competent anticoagulant lichen species. Lichens' AEs were evaluated for their anticoagulant activity by monitoring activated partial thromboplastin time (APTT) and prothrombin time (PT) assays. A strong, positive correlation was observed between total phenolics concentration (TPC) of species and blood coagulation parameters. U. decussata was the only species with the longest clotting time in both APTT and PT assays. The research was moved forward by performing in vivo assays using rats. The results corroborated the dose-dependent impact of U. decussata's AE on rats' clotting time. Major secondary metabolites of U. decussata and their plasma-related bioavailability were also investigated using LC-ESI-MS/MS. Atranol, orsellinic acid, D-mannitol, lecanoric acid, and evernic acid were detected as possible bioavailable anticoagulants of U. decussata. Our findings suggest that U. decussata might be a potential anticoagulant lichen species that can be used for the prevention or treatment of coagulation-related issues such as cardiovascular diseases (CVDs).


Anticoagulants/pharmacology , Lichens/chemistry , Plant Extracts/pharmacology , Anticoagulants/chemistry , Anticoagulants/isolation & purification , Benzaldehydes/chemistry , Benzaldehydes/isolation & purification , Benzaldehydes/pharmacology , Blood Coagulation/drug effects , Blood Coagulation Tests , Dose-Response Relationship, Drug , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/pharmacology , Mannitol/chemistry , Mannitol/isolation & purification , Mannitol/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Resorcinols/chemistry , Resorcinols/isolation & purification , Resorcinols/pharmacology , Salicylates/chemistry , Salicylates/isolation & purification , Salicylates/pharmacology
14.
Chem Biodivers ; 18(3): e2000928, 2021 Mar.
Article En | MEDLINE | ID: mdl-33555653

Nine new ß-resorcylic acid derivatives, (15S)-de-O-methyllasiodiplodin (1), (13S,15S)-13-hydroxy-de-O-methyllasiodiplodin (2), (14S,15S)-14-hydroxy-de-O-methyllasiodiplodin (3), (13R,14S,15S)-13,14-dihydroxy-de-O-methyllasiodiplodin (4), ethyl (S)-2,4-dihydroxy-6-(8-hydroxynonyl)benzoate (5), ethyl 2,4-dihydroxy-6-(8-hydroxyheptyl)benzoate (6), ethyl 2,4-dihydroxy-6-(4-methoxycarbonylbutyl)benzoate (7), 3-(2-ethoxycarbonyl-3,5-dihydroxyphenyl)propionic acid (8), and isobutyl (S)-2,4-dihydroxy-6-(8-hydroxynonyl)benzoate (9), together with a known ethyl 2,4-dihydroxy-6-(8-oxononyl)benzoate (10) were obtained from Lasiodiplodia theobromae GC-22. The structures of these compounds were elucidated by extensive spectroscopic analyses. Compounds 1, 3, and 6 showed growth inhibitory effects against Digitaria ciliaris. Conversely, treatment with compounds 5, 6, 7, 9, and 10 stimulated elongation activity toward the root of Lactuca sativa. These data expand the repertoire of new ß-resorcylic acid derivatives that may function as lead compounds in the synthesis of new agrochemical agents.


Agrochemicals/pharmacology , Ascomycota/chemistry , Digitaria/drug effects , Hydroxybenzoates/pharmacology , Lactuca/drug effects , Agrochemicals/chemistry , Agrochemicals/isolation & purification , Digitaria/growth & development , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Lactuca/growth & development , Molecular Structure , Plant Roots/drug effects , Plant Roots/growth & development , Stereoisomerism
15.
J Nat Prod ; 84(2): 417-426, 2021 02 26.
Article En | MEDLINE | ID: mdl-33492131

Twelve hitherto unknown tandem prenylated p-hydroxybenzoic acid derivatives, namely, oberoniamyosurusins A-L, together with five known derivatives, were isolated from an EtOH extract of the whole parts of the plant Oberonia myosurus. Compounds 10, 13, and 17 exhibited moderate inhibitory activity against Staphylococcus aureus subsp. aureus ATCC29213 with MIC50 values ranging from 7.6 to 23 µg/mL. To determine the biosynthetic pathway of this class of tandem prenyl-substituted compounds, the full-length transcriptome of O. myosurus was sequenced, yielding 19.09 Gb of clean data and 10 949 nonredundant sequences. Two isoforms of p-hydroxybenzoic acid prenyltransferases were annotated and functionally characterized as the enzymes that might be involved in the biosynthesis of nervogenic acid (13) in Pichia pastoris.


Anti-Bacterial Agents/pharmacology , Dimethylallyltranstransferase/genetics , Hydroxybenzoates/pharmacology , Orchidaceae/chemistry , Anti-Bacterial Agents/isolation & purification , China , Hydroxybenzoates/isolation & purification , Microbial Sensitivity Tests , Molecular Structure , Orchidaceae/enzymology , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Prenylation , Staphylococcus/drug effects
16.
Nat Prod Res ; 35(15): 2579-2582, 2021 Aug.
Article En | MEDLINE | ID: mdl-31642695

From the methanol extract of the wood of Mangifera gedebe (Anacardiaceae), we had isolated a new secondary metabolite named gedebic acid (1) and six known compounds (2-7). Their chemical structures were determined by spectroscopic methods as well as comparing with data in the literature. All compounds were tested for α-glucosidase inhibitory activity. Compounds 4-7 showed more potent inhibitory activity, with IC50 values ranging from 45.3 to 142.6 µM, than that of a positive control acarbose (IC50, 214.5 µM).


Glycoside Hydrolase Inhibitors/chemistry , Hydroxybenzoates/chemistry , Mangifera , alpha-Glucosidases/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Hydroxybenzoates/isolation & purification , Molecular Structure , Plant Extracts , Wood
17.
J Ethnopharmacol ; 264: 113052, 2021 Jan 10.
Article En | MEDLINE | ID: mdl-32535239

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza Bge. as a traditional Asian medicinal plant, roots and rhizomes (Danshen) are used to treat chronic hepatitis and coronary heart disease. In recent years, the medicinal value of S. miltiorrhiza stems and leaves total phenolic acids extract (JF) similar to roots and rhizomes has received increasing attention. S. miltiorrhiza roots and rhizome tanshinone extract (DT) has a good anti-inflammatory effect. AIM OF THE STUDY: To explore the therapeutic effect and possible molecular mechanisms of JF and DT alone or in combination on dextran sulfate sodium (DSS)-induced colitis mice. MATERIALS AND METHODS: Colitis was induced by received 2% DSS in drinking water for 7 consecutive days. Then mice were administered orally for 7 days. Disease activity index (DAI) scores and body weight were recorded daily. After the end of the experiment, colon was removed, colon length was measured and histopathological analysis was performed. Inflammatory factors expression was determined by ELISA, its mRNA expression was detected by real-time quantitative PCR, and the expression of related proteins on TLR4/PI3K/AKT/mTOR signal was analyzed by Western blot. RESULTS: Treatment with JF and DT alone or in combination reduced DAI scores, increase body weight, improved colon shortening, and decreased colon histology scores. In addition, the expression level of inflammatory factors was inhibited. The combination of JF and DT had a better inhibitory effect on inflammatory factors compared to JF alone. We also found that DT alone and JF combined with DT inhibited TLR4/PI3K/AKT/mTOR signaling-related proteins expression levels (including TLR4, p-PI3K p110α/PI3K p110α, p-AKT (ser473)/AKT, mTOR, p-mTOR, NF-κB p65), showing an effective anti-inflammatory effect. CONCLUSIONS: We demonstrated for the first time that, JF and DT alone or in combination effectively ameliorated DSS-induced ulcerative colitis in mice, possibly by inhibiting the TLR4/PI3K/AKT/mTOR signaling pathway.


Abietanes/administration & dosage , Colitis, Ulcerative/drug therapy , Hydroxybenzoates/administration & dosage , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Salvia miltiorrhiza , TOR Serine-Threonine Kinases/antagonists & inhibitors , Toll-Like Receptor 4/antagonists & inhibitors , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Dextran Sulfate/toxicity , Drug Therapy, Combination , Hydroxybenzoates/isolation & purification , Male , Mice , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/administration & dosage , Phosphoinositide-3 Kinase Inhibitors/isolation & purification , Plant Extracts/administration & dosage , Plant Extracts/isolation & purification , Plant Leaves , Plant Stems , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Toll-Like Receptor 4/metabolism
18.
J Ethnopharmacol ; 269: 113737, 2021 Apr 06.
Article En | MEDLINE | ID: mdl-33359855

ETHNOPHARMACOLOGICAL RELEVANCE: Uapaca species including Uapacastaudtii Pax (Phyllanthaceae) are used in West Africa ethnomedicine to treat diverse ailments including pile, rheumatism, oedema and wound healing. However, the anti-inflammatory and analgesic potential as well as constituents of the Uapacastaudtii stem bark has not been investigated. AIM OF THE STUDY: The study was designed to evaluate the anti-inflammatory, analgesic, and antioxidant activities of extract and fractions ofU. staudtii stem bark, and to isolate the bioactive constituents. MATERIALS AND METHODS: The anti-inflammatory, analgesic and antioxidant activities of the ethanol extract, dichloromethane, ethyl acetate, butanol, and aqueous fractions of U. staudtii stem bark, as well as protocatechuic acid and betulinic acid isolated from the bioactive ethyl acetate fraction were evaluated in different mice models of inflammation and pain; furthermore, antioxidant assays were carried out. Chemical structures of isolated compounds were established based on spectroscopic studies and comparison with literature data. RESULTS: The ethanol extract and ethyl acetate fraction exhibited good anti-inflammatory, analgesic, and antioxidant capacity in all studied models, comparable with those of the standard drugs used. Protocatechuic acid also gave significant (p < 0.05) anti-inflammatory (83%and 88% inhibition for egg-albumin induced and xylene induced oedema, respectively), analgesic (56% inhibition and 22 s of pain suppression for acetic acid-induced and hot plate-induced pain, respectively), and antioxidant effects (97% inhibition and absorbance of 2.516 at 100 µg/mL for DPPH and FRAP assay, respectively) in all the models, whereas betulinic acid only exhibited significant (p < 0.05) anti-inflammatory and antioxidant activity. CONCLUSIONS: The result supports the medicinal uses of the U. staudtii stem bark in the management of pain and inflammatory disease. This is the first report on the biological activities and characterization of compounds inU. staudtii, and presence of protocatechuic acid in Uapaca genus.


Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Pain/drug therapy , Phyllanthus/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Africa, Western , Analgesics/chemistry , Analgesics/isolation & purification , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/therapeutic use , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Antioxidants/therapeutic use , Behavior, Animal/drug effects , Disease Models, Animal , Edema/chemically induced , Edema/drug therapy , Female , Free Radical Scavengers/pharmacology , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/pharmacology , Hydroxybenzoates/therapeutic use , Inflammation/etiology , Male , Mice , Pain/etiology , Pentacyclic Triterpenes/isolation & purification , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/therapeutic use , Phenol/analysis , Phenol/chemistry , Plant Bark/chemistry , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Betulinic Acid
19.
Article En | MEDLINE | ID: mdl-33126069

Extraction of polar acidic compounds is a challenging task in electromembrane extraction. In this study, gel-electromembrane extraction was employed for the extraction of phenolic acids as the polar acidic compounds from fruit juices. For this aim, the extraction of phenolic acids from the juice samples (4 mL, pH = 6.0) was carried out across the agarose gel membrane (concentration of agarose; 3% (w/v), pH of gel; 10.0, and thickness of membrane: 3 mm) into the acceptor solution (100 µL, pH = 12.0). Also, this extraction process was conducted by applying the optimum potential (25 V) for 15 min to the extraction system. Under the optimized condition, acceptable linearity (R2 ≥ 0.993) over a concentration range of 10.0-2500 ng mL-1 was achieved. The limits of detection were between 3.0 and 15.2 ng mL-1, while the corresponding repeatabilities ranged from 5.3 to 11.4% (n = 4). The recoveries achieved for the extraction of target compounds were ranged from 26.8 to 74.4%. The proposed method was used for the extraction of phenolic acids from orange, apple and kiwi juices, and the obtained relative recoveries in the range of 78.0-104.2% and RSDs in the range of 6.3 to 11.3% indicated successful extraction of phenolic acids.


Chromatography, High Pressure Liquid/methods , Electrochemical Techniques/methods , Fruit and Vegetable Juices/analysis , Hydroxybenzoates , Actinidia/chemistry , Citrus sinensis/chemistry , Hydroxybenzoates/analysis , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Limit of Detection , Linear Models , Malus/chemistry , Reproducibility of Results , Sepharose/chemistry
20.
Molecules ; 25(20)2020 Oct 21.
Article En | MEDLINE | ID: mdl-33096616

Hypoxia is a common pathological process in various clinical diseases. However, there is still a lack of effective anti-hypoxia active substances. Agaricus bitorguis (Quél.) Sacc Chaidam (ABSC) is a rare wild edible macrofungus that grows underground at high altitudes. Herein, intracellular phenolic acids-rich fractions (IPA) were extracted from ABSC ZJU-CDMA-12, and the structural characterization and anti-hypoxia activity of IPA on PC12 cells were elucidated as well. The results of HPLC-Q-TOF-MS illustrated that five kinds of IPA were isolated from ABSC, including (-)-epicatechin gallate, arabelline, yunnaneic acid D, 2'-O-p-hydroxybenzoyl-6'-O-trans-caffeoylgardoside,4'-O-methylgallocatechin-(4->8)-4'-O-methylepigallocatechin. IPA extracted from ABSC proved to show anti-hypoxia activity on hypoxia-damaged PC12 cells. Hypoxia enhanced reactive oxygen species (ROS) generation and reduced the mitochondrial membrane potential (ΔΨm) in PC12 cells, resulting in the inhibition of survival and induction of apoptosis in PC12 cells. Measurements of 100 µg/mL and 250 µg/mL IPA could significantly reduce hypoxia-induced damage in PC12 cells by decreasing overproduced intracellular ROS, improving ΔΨm, and reducing cell apoptosis rate. Our findings indicated that the IPA from ABSC potentially could be used as novel bioactive components applied to anti-hypoxia functional foods or medicines.


Agaricus/chemistry , Cell Hypoxia/drug effects , Hydroxybenzoates/pharmacology , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Cells, Cultured , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Oxidative Stress/drug effects , PC12 Cells , Rats
...